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Abstract—Sir Isaac Newton defined the principles describing
the motion of two particles under the influence of their mutual
gravitational attraction. However, he was unable to solve the
problem for more than two particles. Systems of three or more
particles can only be solved numerically. The Barnes-Hut N–body
simulation algorithm approximates nearby bodies by considering
them as a single body and is widely used due to its time
complexity of O(n logn). In this paper, we show our results of
a parallel version of an alternative implementation of the Barnes-
Hut algorithm that differs from current state-of-the-art solutions
in terms of tree construction, resulting in faster computations
while allocating more memory in the beginning. We also compute
the forces of all bodies, including those outside of the visible
space which also differs from other implementations. We provide
a sequential and a parallel version using MPI and discuss the
results such as speedup gained by parallelism vs. sequential and
other parallel executions.

Index Terms—N–Body Problem, N–Body Simulation, Barnes-
Hut Parallelization

I. INTRODUCTION

The N -body problem in physics concerns the prediction of
motions of individual particles or bodies that are interacting
with each other in a gravitational field. A N–body simulation
reproduces the behaviour and evolution of a system that is
composed of N bodies under physical influences, such as
gravity or physical forces, in order to solve the N -body
problem. This simulation is widely used in different areas, i.e.
astrophysics or molecular dynamics, to study the interaction
of celestial objects or the formation of the Universe as being
done by the Millennium Simulation [1] as a popular example.

The two-body problem with N = 2 has already been
solved and described by Newton’s Laws of Motion and by
the inverse square Law of Gravitation. However, for N > 2,
the law cannot be applied because no closed form solutions to
Newton’s law exist since the motions of the particles become
unpredictable, hence making the N–body problem one of
the most challenging problems in the history of science [2].
Nowadays there exist other proposals for solving the N–body
problem with small N , i.e. 3 ≤ N ≤ 5. However, these
formulas are restricted, in the sense that they make additional
assumptions that must hold. For instance, for N = 3, i.e.
the well-known three-body problem [2], the mass of the third

particle is set to zero so that the problem can be reformulated
into the two-body issue [3]. Systems with N < 3 have unique
and analytical solutions, while larger N require numerical
integration. For large N , however, the computations become
intensive, thus making a scalable simulation impossible for
the past decades. In order to speed-up the simulations, several
algorithms have been proposed that try to achieve best time
complexities. Also, with high performance computing (HPC)
nowadays, we can run larger simulations and achieve more
accurate and reliable results within reasonable time. For our
simulation, we make use of the popular Barnes-Hut algorithm
[4] that reduces time complexity from previous algorithms of
O(n2) to O(n log n). Our contribution is an approach that
is different in two perspectives from the current state-of-the-
art methods. We achieve a fast simulation by allocating more
memory for the tree construction and reducing computation
time by parallelizing the construction of the tree. Also we
compute the physical forces for all bodies, i.e. also of those
outside the ”visible”/initial space dimensions which differen-
tiates our approach from current state-of-the-art solutions. We
provide a sequential as well as a parallel version using MPI
of the simulation and compare the speedup obtained using
parallelism with different parameters. A comparison against
sequential executions is also presented. The remainder of this
paper is organized as follows. In Section II, we define the
problem, list notations, describe properties of our model and
assumptions that must hold. Section III reports on related
work. Section IV explains our approach of solving the N–
body problem using efficient parallelization. We conduct a
simulation study in Section V. Finally we conclude in Section
VIII.

II. PROBLEM DEFINITION AND MODEL

A. Problem definition

The problem we are tackling is about predicting iteration-
wise the next positions of N bodies in a 2D–space according to
their mutual gravitational force attractions. This will be done
in the C programming language in a sequential and a parallel
version using MPI and the HPC cluster of the University of
Luxembourg.



B. Definitions and notations

Acronym / Notation Definition

cm Mass multiplicator
G Gravitational constant
I Number of iterations
vF Force vector
mi Mass of particle i
mc Center mass
r Root node

C. Properties

• Every particle is initially positioned at a random 2D
position with a random limited velocity.

• Every particle has a random mass mi.

D. Assumptions

• The rotations of bodies are neglected.
• We consider a simulation in a 2D space.
• An endless space without boundaries, therefore no body

is neglected.
• The collision of bodies is not taken into account.

III. RELATED WORK AND BACKGROUND

This section describes related work conducted by other
researches. In [4], the original Barnes-Hut algorithm is de-
scribed.

With the trend of high performance computing in the last
decade, it is nowadays much easier to perform simulations
that would take ages to finish some decades ago. This is why
many researches are starting to reconsider old problems from
the very bottom. The N–Body problem has been addressed by
several scientists in the past years where a major goal is to
try to get a simulation work with as much bodies as possible.
One of the most outstanding works with this goal was done by
Ishiyama et al. [5] where the researches successfully simulated
one trillion bodies on a HPC-cluster of 4.45 pflops of capacity.

Other works done in this realm is the attempt to further
improve the algorithm of Barnes-Hut, i.e. achieving O(n)
complexity [6] as opposite to O(n log n) which is already an
improvement compared to O(n2).

A. The Barnes-Hut algorithm

The Barnes-Hut algorithm allows us to reduce the time
complexity from O(n2) to O(n log n). There even exist further
improvement techniques as discussed in [6] and [7] as exam-
ples. Considering parallelization, researchers are also working
on high scalable methods based on Barnes-Hut using GPU
accelerated parallelization [8] [9] [10] [11]. However Barnes-
Hut is only an approximation and therefore all techniques
that improve the O(n2) complexity are not 100% correct
and precise. However, the difference between simulation and
reality is extremely small and therefore insignificant when
looking at the bigger picture.

In the following subsections we will shortly describe how
this algorithm works.

1) Tree Construction: First of all we need to create a quad-
tree which sort the bodies into the right position. A quad-tree
is a tree where every node has exactly 4 children. Every body
in the tree is represented by an unique leaf, however, not every
leaf represents a body because it may be empty. In order to
build a quad-tree with all the bodies, we first need to create
an empty root leaf r and put the first body into it. This root
node represents the smallest possible box, which contains all
the bodies, also called bounding box. Next we pick the second
body and place it again into r. However now 2 bodies are in
r, which means that the root can no longer be considered as
a leaf. Therefore r has to be considered from now on as a
node and we need to add 4 empty leafs corresponding to the
north-west (NW), north-east (NE), south-west (SW), south-
east (SE). The 2 bodies from r need to be placed at the direct
sub-leaf, by looking at the bodies coordinates and the middle
of the upper node’s bounding box. This may even mean that 2
bodies may be placed into the same sub-nodes. Therefore this
procedure has be repeated until both bodies are represented by
2 distinct leafs. This whole procedure will be repeated until
the last body, including all the other ones, have reached a leaf.

2) Force Calculations: After having constructed the tree,
we may apply the force impact each body receives. For each
body, we first look at cm of the root node r of our quad-tree. If
the body is enough far away from cm, it will calculate the all
force vectors vF with cm from r and the impulse calculation
for that particular body is finished. However, if the body is
close enough, it will recursively redo the operations for all
the sub-nodes from r. This recursive procedure will be stopped
until we reach a leaf. θ, which is often static, defines if a body
is far enough and determines if the body can immediately
calculate the force impact with a specific node. In case θ is
shrinking to 0, the closer we get to the real world expectation.
If θ becomes 0, the force calculation acts exactly the same way
as the N-squared algorithm, as every body has to calculate it’s
vF with every other body.

IV. OUR APPROACH

In this section we will elaborate on a different way on how
we compute the necessary steps to calculate the final impact
forces.

A. Tree Construction

The current state of the art takes each body after the other
and places it into the tree until the body reaches a leaf. As
soon as a body reaches a node which already contains a body
has more than 1 body, it will become a node which has 4
sub-nodes and sort the 2 bodies as shown in the figures 2-5
from the given universe which is depicted in figure 1.
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Fig. 3. State-of-the-art approach - 2
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Fig. 4. State-of-the-art approach - 3
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Fig. 5. State-of-the-art approach - 4

Our approach is different as we first sort all bodies from an
upper node and put them into the direct sub-nodes as shown
in figures 6-8, without subdividing the sub-nodes immediately.
After having sorted all the bodies from the upper node, we
calculate and store the mc location and it’s gravity for each
sub-node to save some computation. Immediately after having
calculated the last part, it is highly recommended to deallocate
the memory where the bodies are stored from the node. After
this we may recursively repeat this procedure with all the 4
sub-nodes until every sub-node is a leaf which contains 0 or
1 body.

This approach needs temporarily more memory to allocate
the bodies into their correspondent quadrant/sub-nodes. On the
other hand, we have less check conditions to compute if the
sub-node has to be split again or that the body has to continue
its path or to leave it at this node. An other major advantage
is that this allows us to parallelize the sorting of bodies more
easily as there will be less critical sections, which will be
shown later.

p3p3 p4p4p1p1 p2p2

Fig. 6. Our approach - 1
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Fig. 7. Our approach - 2
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Fig. 8. Our approach - 3

Furthermore to have a more realistic simulation, the root’s
bounding box is dynamic and contains at any moment all
bodies. At every iteration the minimum and maximum of
the x and y coordinates of each body are picked to build
the smallest possible bounding box around all the bodies.
Current state of the art often have a static bounding box,
even though the whole universe of the bodies may move
outside the bounding box. Other known Barnes-Hut N-Body
simulators ignore outliers and also ignore their force impact
on the universe, as shown in figure 9.
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Fig. 9. Universe - Bounding boxes

B. Force Calculations

The force calculation is not different from the current state
of the art. However we added a dynamic θ, which defines
when a body is far enough from a given node / quadrant to
immediately calculate the force with the upper node or if the
body needs to go further into the sub-nodes.

C. Parallelization

In this section we describe the parallelization methods used
for our approach. We are using the Message Passing Interface
(MPI) for parallelization.

1) Master – Slave Model: In order to maintain an uniform
distribution, we make use of a dedicated processor (usually
the first with rank 0) which we call the master and the other
processors, the slaves, which are following the instructions of
the master.

In this program we have 2 parts which are parallelized using
MPI with Master-Slave / Server-Client architecture.

2) Parallel Tree Construction: The first part is parallelizing
the construction of the tree while using the new approach.
Starting from the root the master / server counts the amount
of existing bodies, including the bounding box. The server
splits the bodies into equally distributed chunks. Every client
receives one chunk, and calculates the position where the
bodies belongs to and sends these information back to the
server. The server collects this information and modifies the
tree himself by putting the bodies into the corresponding sub-
nodes. This procedure will be repeated recursively until every
body has reached a leaf. However it is not recommended to
use the master-slave architecture for every node as the amount
of bodies to sort shortens, the time to send messages between
processors takes longer than actually sorting the bodies from
the server.

3) Parallel Force Calculations: The second master-slave
MPI part is for the force calculation. This one is more com-
plicated as every computing unit needs to have the knowledge
of the constructed tree. Multiple processors don’t share the
memory, therefore the data of the tree needs to be send from
the server to the clients. As we used C, it is not possible to send
nested structures / trees over MPI. Therefore we implemented
our own serialization of the tree, but the server only sends
those data which are needed to compute the forces. Next, as
every processor now has the knowledge of the tree, the server
has to send again the information of the bodies. After, the
clients calculate the forces for each body they were assigned
to and send this data to the

V. IMPLEMENTATION AND EXPERIMENTAL SETUP

A. Initial simulation setup

G 6.67 · 10−11

I 1200

Initial position dimensions 4000× 2080

Number of particles 106

Min. mi 30 · 106

Max. mi 50 · 106

Initial θ 0.5

B. Program

The program is implemented in pure C. The program
exports a JSON file containing all the bodies positions at each
step. This data is used by another program as input in order to
enable a visual simulation which is also used as verification
of correctness. The C-program makes use of the MPI library.
For our simulation, the OpenMPI version were used.

C. Visualization

In order to gain a visual insight into our generated simula-
tion and as a proof of concept, we have developed a browser
based tool that takes as input the computation data of the



simulation and produces a visualization of the whole relative
behaviour between all the bodies, i.e. rendering all particles to
their corresponding position. In order to provide a good and
satisfying simulation no matter how many bodies are rendered,
the tool needs to have a high performance when displaying
more than 100k different bodies.

The challenge was definitely not to reinvent the wheel but
more on finding a good Javascript Framework that provides
such performance out of the box. The choice after all fell on
the Three.js framework which enables the easy use of WebGL
in the browser and provides the possibility to create particle
systems in a three dimensional space. This flexibility given by
the framework allows to simply use the available structures and
map the read in data on those particles. After all the simulator
should be as easy usable as possible without doing to many
changes when changing from 2D to 3D.

Furthermore the construction of the tool in the browser
allows to run it without the big need of a setup, simply drop in
the name of the json file and you are ready to go. In addition
the simulator is ready to display the boxes of the bodies, but
is disabled in the current version of the tool.

The following figures show our simulator and a running
simulation with 104 bodies.

Fig. 10. Our Simulator - 1/4

Fig. 11. Our Simulator - 2/4

Fig. 12. Our Simulator - 3/4

Fig. 13. Our Simulator - 4/4

Figure 10 shows the simulation of particles in an early stage
where each particle is randomly positioned in the 2D-plance.
In figure 11 we can observe that the force impacts work, thus
attracting the particles to each other. Figure 12 and 13 finally
show a rotation of the particle positions according to the center.
In the top right corner one can adjust the particle radius size
in order to enlarge or shrink the objects in the simulation.

D. Cluster setup

We were using up to 32 nodes with each 1 core, i.e., 32×1
processors. The nodes that were available are composed of the
following hardware:

[32] 2 Xeon L5640@2.26 GHz, 24GB RAM
[16] 2 Xeon L5640@2.26 GHz, 48GB RAM
[1] 2 Xeon X7560@2.26 GHz, 1024GB RAM
[16] 2 Xeon E5-2660@2.2 GHz, 32GB RAM
[16] 2 Xeon E5-2660@2.2 GHz, 32GB RAM

In this setup we explicitly reserved nodes with each one
core to illustrate a distributed network communication flow
with real message passing.



VI. VALIDATION AND EXPERIMENTAL RESULTS

In order to test and validate the implementation of our
sequential and parallelized algorithm, it should be tested in
different kind of setups and compare it also to the n-squared
version. In order to get an insight in the overall behaviour
of all the different performances a benchmarking diagram is
provided including all the algorithms such that it is easy to spot
significant differences in the computation time depending of
course on the amount of simulated bodies in the universe.

Fig. 14. Performance Benchmark

For the overall experimental setup we went with a total
of 4 different parallel setups to test our approach on the
Barnes-Hut algorithm. Those tests are performed on 4 up to
32 different nodes with 1 core each. In addition we tested the
sequential version of the Barnes-Hut algorithm as well as a
sequential and parallel version in OpenMP of the n–squared
approach. This allowed us to provide a widespread view and
compare the results with each other gathered on the HPC. As
expected from the n-squared approach a polynomial growth in
time is observed, what really was rather unexpected was that
the inclusion of OpenMP in the n-squared approach made no
significant difference, it nearly stayed the same. In the case
of our sequential Barnes-Hut approach we could observe the
complexity of O(n log n), it was now interesting to see how
the parallel approach on the Barnes-Hut algorithm performed
in comparison. A rather unexpected picture was to observe,
compared to our sequential Barnes-Hut approach, the parallel
versions with nodes greater equal 8 performed less the higher
the amount of bodies went. We suppose that this is due to
the way the parallel version was implemented, since we have
heavily rely on the usage of MPI Send and Receive, the
more processes we have the more messages have to be passed
around. Therefore a golden number has to be found for the
best behaviour, in our case this seemed to be 4 different nodes,
it was performing better than the sequential approach when
we exceeded the number of 200k bodies. But still the best

behaviour would be if we increase the number of nodes more
then the overall time should go down.

VII. FUTURE WORK

As our program should be considered as a proof of concept
and a prototype, we still need to optimize several parts of the
code.

First of all we need to reduce the amount of messages
being send from the MPI, in case the time to send the tasks
to clients and receive back the answers take more time than
actually compute the tasks from the server himself. This can
be done by improving MPI communication groups to reduce
communication overhead. Moreover instead of choosing all
available processors to compute we only take part of them to
reduce the amount of passing messages.

In order to further reduce the amount of messages send
from each process, the server could assign each process some
fix bodies. Then, the server needs only to send the bodies at
the beginning of the program including the initial velocity. As
the clients calculate the force impact of each body, it is then
for themselves possible to know the exact location of their
bodies, thus reducing the messages send from the server as
every client knows their assigned bodies locations.

Another approach is to deploy multiple servers, each main-
taining its own slaves. Then, building a inter-server commu-
nication for constructing the whole tree using each sub-tree.
This method is quit interesting and we keep it in memory for
later tests.

Also, we would like to perform simulations on nodes with
more cores. In the current simulation, we performed the
executions on up to 32 nodes each having only one core.
This implies bigger communication times since the nodes are
physically separated. Therefore, we would like to combine the
processors locally on each node by using more cores. We are
convinced that this will positively impact our performance.

As check conditions are computational intensive, we would
like to reduce them even more.

Furthermore we plan to implement CUDA to further speed
up the calculations and benchmark it on the HPC cluster.

Additionally we would like to implement the system into
C++, which allows us to be more flexible and compare the
current version with C++ using other tools such as Boost.

Last but not least we also plan to implement a 3D version
of our approach by maintaining an Oct-tree instead of a Quad-
tree.

VIII. CONCLUSION

In order to pass some light on the executed work, we
propose a different approach on the Barnes-Hut Algorithm by
providing what we consider a much more efficient approach
to construct the overall tree. This different approach enables
a much more efficient manner to sort the bodies in to the
tree, which will later be helpful for successfully parallelizing
the tree construction. The current version of our algorithm
can simulate up to more than 1 million bodies in less time
than the sequential version of our Barnes-Hut approach. As



an additional feature, we have created an easy to use and very
performance based simulator which does not require much of
a setup such that one can easily test and run simulations.

This simulator can be seen as a proof of concept of the
correct functioning of the algorithm as well as a visual
feedback. After all, our parallelization relies on the heavy
use of MPI methods for sending and receiving purposes,
therefore the need for serialization was emerged, which we
again tackled on our own. The custom serialization allows
us to only rely on the information we need for a process to
know upon reception.

The execution of the overall parallelization is accompanied
by some difficulties on how someone shall approach the
development of good functioning and yet parallelized
Barnes-Hut algorithm. We can conclude that the Barnes-Hut
algorithm is definitely not the easiest algorithm to parallelize
due to it overall reappearing of recursion in it, this had
also the side effect that the processes needed to know about
the tree to do calculations, this as a side effect means that
we had to deal with shared memory concerning the tree.
The serialization as mentioned beforehand and the shared
memory problem lead to an overall exhaustive use of MPI
send and receives messages which as side effect are leading
to a message overhead which can possibly explain why the
parallel version performs less good the more nodes are used.

As a final word, the approximation delivered by Barnes-
Hut looks stunning but the implementation of a reliable and
parallel version can be a hard task to achieve due to the many
mentioned obstacles. Nonetheless, we went for a new approach
to construct the tree, succeeded in implementing a parallel
version, that delivers useful results for a continuation on even
faster and much more performance based approaches in the
future.
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